
HoWCoM Case Study - TGRL Tool

Rijul Saini and Gunter Mussbacher

October 11 2021

1 Prerequisites

During the hands-on sessions, participants have two options to build TGRL
models using our tool, i.e., TGRL (Textual Goal-oriented Requirement Lan-
guage) Visual Studio (VS) Code extension [1]. First, participants can use VS
Code desktop-based application to create or join a collaboration session. Sec-
ond, participants can join the collaboration session using web-based VS Code
views in a browser. We highly recommend participants to use the first option
due to the limited support available in web-based VS code views in a browser.
For example, the code highlighting feature and visualization of corresponding
diagrams are not supported in a browser. However, participants will be still
able to edit the textual TGRL models collaboratively using the second option.

In this section, we provide the steps to create or join a collaboration session.
Next, we provide excerpts from the TGRL grammar so that participants can
refer them during the hands-on session to build TGRL models. For further
details, participants can refer to the GitHub repository of TGRL grammar.

1.1 Steps for Installation

1. Install the desktop-based VS Code application on your system from the
VS Code site.

2. Download our tool in the form of vsix file (vscode-xtext-turn-0.0.2.vsix)
from the GitHub repository of our tool. We provide further details in our
repository to develop or debug the extension.

3. Open a Terminal to create a project run directory (workspace) and launch
VS code extension using the below commands:

mkdir workspace

cd workspace

code .

4. Install the downloaded VSIX file (vscode-xtext-turn-0.0.2.vsix) of our pro-
posed TGRL extension in VS Code by using shortcut key CTRL + SHIFT
+ X or navigating in menu bar:

View → Extensions → Install from VSIX... → Select the downloaded vsix
file.

1

https://github.com/JUCMNAV/TURN/blob/ca8cf19c71bc95bb397c5500325cf41aa05059f2/org.xtext.project.turn/src/main/java/org/xtext/project/turn/Turn.xtext
https://code.visualstudio.com/download
https://github.com/Rijul5/vscode-turn

5. Install the VS Code Live Share extension using the “Search extensions in
Marketplace” or using the below command after using CTRL + P (VS
Code Quick Open) shortcut key:

ext install MS-vsliveshare.vsliveshare-pack

6. Click on the “LiveShare” option in the bottom left corner of VS Code to
start a collaboration session.

7. Modeller can create TGRL Models (file with .turn extension) collabora-
tively. For quick start, we have provided a sample TGRL model ”exam-
ple.turn” in the “examples” folder of the repository.

1.2 Excerpt from TGRL Grammar [2]

URNspec:

’urnModel’ name=QualifiedName

info=(ConcreteURNspec)? &

actors+=Actor*

Actor:

’actor’ name=QualifiedName

longName=LongName ’{’

(’importance’ (importance=ImportanceType |

importanceQuantitative=QuantitativeValue))?

elems+=IntentionalElement*

’}’;

IntentionalElement:

type=IntentionalElementType name=QualifiedName

longName=LongName ’{’

(’importance’ (importance=ImportanceType |

importanceQuantitative=QuantitativeValue))?

(’unit’ unit=STRING)?

linksSrc+=ElementLink*

’}’;

ElementLink:

Contribution | Decomposition | Dependency;

Contribution:

(name=QualifiedName longName=LongName)?

’contributesTo’ dest=[IntentionalElement|QualifiedName]

(correlation?=’correlated’)? ’with’ (contribution=ContributionType |

quantitativeContribution=QuantitativeValue);

2 Goals

In this section, we present our research questions which we have improved based
on reviewers’ feedback and the overall objectives of the HoWCoM workshop.

2

https://github.com/Rijul5/vscode-turn

1. Which editors or IDEs are preferred by participants for performing mod-
elling and development together?

2. What is the satisfaction level of participants for handling conflicts with
our proposed tool?

3. What is the performance of the collaborative environment facilitated by
our solution in terms of scalability and time?

4. What other potential features and use case scenarios are possible with our
proposed tool?

3 Tasks

In this section, we present the tasks which we identify to answer the above
research questions and to evaluate the features supported by our tool.

1. Create X collaboration sessions based on the total number of groups of
participants, i.e, X collaboration sessions for X groups. One member in
each group leads the collaboration session by creating a live share col-
laboration session and sharing the URL of the created session with other
participants through any communication medium such as email and slack.
While accepting participants’ requests to join the session, access model
can be changed from read-only to write or vice-versa.

2. After joining the collaboration session, each participant joins the chat
group in Live Share inside VS Code. In addition, each participant ensures
that the TGRL VS code extension is installed on their systems (replicas).

3. Participants verify the error messages due to empty TGRL models (val-
idation). In addition, participants verify that auto auto-suggestions are
populated by our tool by using CTRL + SPACE keys.

4. Participants give a name to the URN model (urnModel <name>) and as-
signs responsibilities in the chat widget for different actors and intentional
elements.

5. Create Y actors where each participant is assigned to create at least one ac-
tor by referring to the excerpt of TGRL grammar provided in Section 1.2.
For quick start, participants can use the examples provided in the “exam-
ples” folder of the repository.

6. Create Z intentional elements where each participant is assigned to cre-
ate at least one intentional element by referring to the excerpt of TGRL
grammar provided in Section 1.2.

7. Participants select the name of an actor (not the “longName”), right click
using mouse to open the context menu, and click ”Generate Diagram”. In
case, ”Generate Diagram” option is clicked without selecting the name of
an actor then a pop-up will open where participants can input the name
of actor. Participants verify that the diagrams are synchronized with the
textual models.

3

https://github.com/Rijul5/vscode-turn

8. Participants can build models individually yet collaboratively (different
model views based on actors). While building models, participants verify
the cursor positions of other participants. In addition, participants can
focus their attention on a particular participant.

9. Participants can perform delete and undo operations by selecting a part
of the model to ensure the recovery of the desired state of their models.

4 Questionnaire

In this section, we present the questionnaire to evaluate the above research
questions and to assess the benefits and limitations of our tool.

Participants are requested to provide comments to the below questions.

1. Which existing features require further improvement?

2. Which other features can be supported by our tool?

3. Which other tools you are aware of that provide similar or better support
for the mentioned features?

Participants are requested to give a score to the below questions based on
their experience on the scale of 1 to 5: 1 (Very unsatisfied), 2 (unsatisfied), 3
(neutral), 4 (satisfied), and 5 (very satisfied).

1. How is your experience in downloading and installing our tool in the form
of a vsix file?

2. How is your experience in launching and joining a collaboration session in
VS Code?

3. How is your experience in locking the models by changing the access mode
of participants to read-only from write access?

4. How is your experience in using the chat channel inside VS Code during
collaboration?

5. How is your experience in following the cursors of other participants and
in using the focus feature while building TGRL models?

6. How is your experience in building the textual models using the auto-
completion feature?

7. How is your experience in selecting or providing the actor name in the
pop-up while generating their corresponding diagrams?

8. How is your experience in observing the changes made to the textual
models are synchronized in corresponding diagrams simultaneously?

9. How is your experience while performing the delete and undo operations
for recovering the desired state of models?

10. How is your experience while observing the changes made by other par-
ticipants in textual models and their corresponding graphical models?

4

11. How is your experience in working on individual model fragments based
on actors as well as their own graphical views?

12. How is your experience in resolving conflicts manually by using the chat
communication channel or in avoiding conflicts by following the cursor
positions of other participants?

13. How is your experience in identifying and managing users during collabo-
ration?

References

[1] R. Saini and G. Mussbacher, “Towards conflict-free collaborative modelling
using vs code extensions,” in 2021 ACM/IEEE 24th International Con-
ference on Model Driven Engineering Languages and Systems Companion
(MODELS-C) (to be published), 2021.

[2] R. Kumar and G. Mussbacher, “Textual user requirements notation,” in
International Conference on System Analysis and Modeling. Springer, 2018,
pp. 163–182.

5

	Prerequisites
	Steps for Installation
	Excerpt from TGRL Grammar kumar2018textual

	Goals
	Tasks
	Questionnaire

